

Synthesis of halomethyl phenyl sulfones and their transformations into biological active compounds

Jacek Szymański¹, dr Zbigniew Ochal²

¹V Liceum Ogólnokształcące im. Ks. Józefa Poniatowskiego w Warszawie, ²Faculty of Chemistry, Warsaw University of Technology

INTRODUCTION

Halomethyl phenyl sulfones are of great practical importance, either as biologically active compounds — mainly biocides and as intermediates in various organic syntheses. Of particular interest were found to be trihalomethyl phenyl sulfones and therefore the new method of their synthesis was developed

SYNTHESIS

The First step of synthesis was the preparation of β -ketosulfones in reaction of sodium aryl sulfinate with 2-bromo-1-phenylethanone in organic solvent, i.e. polyethylene glycol (PEG-400).

$$R \longrightarrow SO_2Na$$
 + $PEG-400$ R $PEG-400$ R 1

The β -ketosulfone **1** in the reaction with potassium halide in the presence of hydrogen peroxide in room temperature gives as main product α -halo- β -ketosulfone **2**.

Applying the sodium hypohalite ,as a halogenating agent, in the reaction of β -ketosulfone 1 carried out in higher temperature, yielded trihalomethyl phenyl sulfones 3 in good yields.

Combining both above methods of halogenating β -ketosulfones, it is possible to receive in simple way trihaloderivatives **4**, containing two different halogens in halomethylsulfonyl moiety.

BIOLOGICAL ACTIVITY

Obtained trihalomethyl phenyl sulfones **3a**, **3b** were tested for their fungicidal activity against six fungal pathogens.

Fungal pathogens	A. alternata	B. cinerea	F. culmorum	P. cactorum	R. solani	B. graminis
Concentration of the	200 mg/ml					1000 mg/ml
compound	20 mg/ml					
Percentage	40	60	80	80	80	
inhibition of colony						40
growth of the fungi	10	10	15	20	20	40
3a						
3b	30	50	80	80	90	50
30	10	15	10	15	20	30

The results of biological evaluation are expressed as the values of percentage inhibition of colony growth of the fungi, derived from the following formula: I = 100 (C - T)/C, where I = percentage inhibition of colony growth of the fungi, C = zone of growth of the fungus colony in mm in the control, T = zone of growth of the fungus colony in mm in the examined sample.

ADVANTAGES OF NEW METHOD

- Low-cost of substrates
- Mild reaction conditions
- High yield of reaction
- Simple laboratory devices

REFERENCES

- 1. K.M. Borys, M.D. Korzyński, Z. Ochal*, A simple and efficient synthesis of trihalomethyl and dihalonitromethyl aryl sulfones, Tetrahedron Lett., 2012, 53, 6606-6610.
- 2. N. Suryakiran, T. Srikanth Reddy, K. Ashalatha, M. Lakshman and Y. Venkateswarlu *Tetrahedron Letters* 47 (2006) 3853–3856
- N. Suryakiran, P. Prabhakar, T. Srikanth Reddy, K. Chinni Mahesh,
 K. Rajesh and Y. Venkateswarlu *Tetrahedron Letters* 48 (2007) 877–881